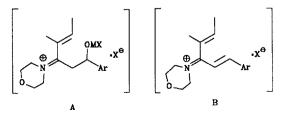

2-MORPHOLINOBUTADIENES AS SYNTHON FOR THE REGIOSELECTIVE PREPARATION OF 3-MORPHOLINO-1,4-PENTADIENES AND β-HYDROXYVINYLKETONES


José Barluenga,* Fernando Aznar, Mª Paz Cabal and Carlos Valdés Departamento de Química Organometálica, Universidad de Oviedo 33071 Oviedo, Spain

Summary: A very simple regioselective preparation of 3-morpholino-1,4-pentadienes and β-hydroxyvinylketones is described.

2-Morpholinobutadienes are easily prepared in a multigram-form by catalytic aminomercuriation of en-ynes.¹ From the point of view of their chemical reactivity, they can act as simple enamines or participate as dienes in [4+2] cycloaddition processes. This different behaviour depends not only on the type of substituents attached to the 2- morpholinobutadiene ²but also on the Lewis acid and solvent used. In this context, the reaction of 1 with aromatic aldehydes in the presence of MgBr₂.OEt₂ in THF affords exclusively 4oxanone derivatives 2.³ On the other hand, when ZnCl₂ in CH₂Cl₂ or MgBr₂.OEt₂ in CH₃CN are used as Lewis acid, divinylketones 3 are the only product obtained ⁴, Scheme I.

It seems reasonable to think that intermediates A and/or B are involved in the formation of 3. If an intermediate type B operates, its simple reduction reaction should give 3-morpholino-1,4-pentadienes 6.

Thus, sequential treatment of 2-morpholinobutadienes 4 with a variety of aromatic aldehydes 5 in the presence of MgBr₂.OEt₂ (*Method A*) or ZnCl₂ (*Method B*) (see Table I) followed by reduction with NaBH₄/MeOH afforded after aqueous work-up, 3-morpholino-1,4-pentadienes 6 in good yields, *Scheme II*, Table I.

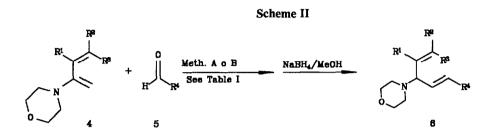
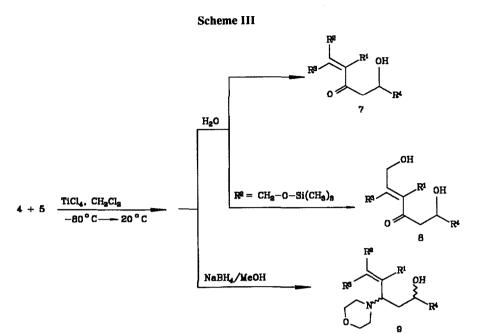



Table I. Preparation of 3-morpholine-1,4-butadienes from 2-morpholinobutadienes.

Compound	R ¹	R ²	R ³	R ⁴	Method ^a A or B	Yield %
6а	CH ₃	CH ₂ OCH ₃	Н	Ph	А	64
6b -	CH ₂ CH ₃	Н	CH3	Ph	В	55
6c	-(CH ₂) ₄ -		н	Ph	Α	68
6d	-((CH ₂) ₄ -	Н	p-Cl-Ph	Α	56
6e	CH ₃	CH ₂ OH	Н	p-Cl-Ph	Α	75

a) Method A 4:5: $MgBr_2OEt_2$ (molar ratio 1:2:2, CH_3CN , 25°C, 6h). Method B 4:5:ZnCl₂ (molar ratio 1:2:2, THF, 70°C, 8h). b) Isolated yield after *trap* to *trap* high vacuum condensation (10⁻⁵ Torr). All the new compounds were characterized by high resolution NMR analysis.

These results show that the formation of the double bond to give the divinylketones occurs before hydrolysis (*type* **B**). However, when the reaction of 4 with different aromatic or aliphatic aldehydes was carried out in the presence of TiCl₄ as a Lewis acid, after hydrolysis, it furnishes β -hydroxyvinylketones 7 in a good yield, *Scheme III, Table II.* It is worth pointing out, that when R² = CH₂OSi(CH₃)₃ in the same reaction conditions, hydrolysis of the silicon - oxygen bond occurs and dihydroxyvinylketones 8 are formed directly, *Scheme III, Table II.* When 1 (R¹ = CH₃, R² = CH₂OCH₃, R³ = H) is treated with benzaldehyde and TiCl₄ followed by NaBH₄/MeOH reduction, the unsaturated morpholinoalcohol 9 were formed as a diastereoisomeric mixture, *Scheme III, Table II.* It permits us to conclude that in this case the intermediate which operates is one of *type* **A**.

Table II:	Hydroxyvinylketones	prepared.
-----------	---------------------	-----------

Compound	R ¹	R ²	R ³	R ⁴	Yield ^a %
7a	CH ₃	CH ₂ OCH ₃	н	Ph	68
7b	CH ₃	CH2OCH3	н	p-Cl-Ph	64
7c	-((CH ₂) ₄ -	н	Ph	57
7d	CH ₃	CH2OCH3	Н	ⁱ Pr	69
7e	CH ₃	CH2OCH3	Н	ⁿ Pr	71
7f	CH ₃	Н	н	Ph	74
8a	CH ₃	CH ₂ OH	Н	Ph	67
8b	CH ₃	CH ₂ OH	Н	ⁿ Pr	64
8c	CH ₃	CH₂OH	Н	CH=CHCH ₃	54

a) Isolated yield after *trap to trap* high vacuum condensation (10⁻⁵ Torr). All the new compounds were characterized by high resolution NMR analysis.

In conclusion, the easily avaliable 2-morpholinobutadienes are good starting material for the obtention not only of 4-oxanones or divinylketones but also for the preparation in a regioselective way of 3-morpholino-1,4-pentadienes and β -hydroxyvinylketones.

Experimental:

General Procedure for the Preparation of 3-morpholino-1,4-pentadienes 6.

Method A: A solution of 2-morpholinobutadiene 4(10 mMol) in 10 ml of dry CH₃CN was slowly added to a solution of MgBr₂.Et₂O (20mMol, 5.56 g) and an aromatic aldehyde (20 mMol) under an argon atmosphere in dry CH₃CN.

Method B: The procedure is identical with that for *method A* but employing dry THF as solvent and $ZnCl_2$ as catalyst. The reaction was carried out at 70°C.

The reaction mixture was stirred for 6 h and then 10 ml of MeOH and 0.5 g of NaBH₄were added successively. After 2 h, it was hydrolised with 50 ml of NaOAc/HOAc buffer solution (pH = 4.6). The organic layers were separated by *acid basic* work up. Removal of the solvents in the basic phase afforded 3-morpho-lino-1,4-pentadiene as a very pure product which can be condensed in high vacuum (10^{5} Torr).

Spectral data: E.g. for N-[4-methoxy-2-methyl-1-(2-phenylethenyl)-2-butenyl]morpholine (6a). ¹³C-NMR (CDCl₃) δ = 138.4 (s), 136.1 (s), 131.7 (d), 128.4 (d), 127.8 (d), 126.8 (d), 126.0 (d), 125.7 (d), 76.7 (d), 67.8 (t), 66.2 (t), 56.9 (q), 51.2 (t), 12.3 (q) ppm.⁵ ¹H-NMR (CDCl₃/TMS) δ = 7.4-7.1 (m,5H), 6.4 (d,1H), 6.1 (dd,1H), 5.5 (dd,1H), 3.9 (d,2H), 3.6 (t,4H), 3.2 (s,3H), 3.0 (d,1H), 2.5-2.3 (m,4H), 1.67 (s,3H) ppm.⁵

General Procedure for the Preparation of Hydroxyvinylketones 7 and 8.

The procedure is identical with that for *methods A* and *B* but employing dry CH_2Cl_2 as solvent and TiCl₄ as catalyst. The reaction was carried out at -80°C. After 6 h, the reaction mixture was hydrolised with 50 ml of H_2O and stirred for 2 h. Then, extracted with Et_2O and dryed over Na_2SO_4 . Removal of the solvents afforded β -hydroxyvinylketones 7 and 8 which were condensed in high vacuum (10⁻⁵ Torr).

 $\label{eq:spectral data: E.g. for 6-hydroxy-1-methoxy-3,7-dimethyl-2-octen-4-one (7d). \ ^{13}C- \ NMR \ (CDCl_3) \ \delta = 201.4 \ (s), \ 138.9 \ (d), \ 137.1 \ (s), \ 71.9 \ (d), \ 69.2 \ (t), \ 58.1 \ (q), \ 40.2 \ (t), \ 32.7 \ (d), \ 18.0 \ (q), \ 17.2 \ (q) \ ppm^5 \ ^{14}-NMR \ (CDCl_3/TMS) \ \delta = 6.6 \ (t, 1H), \ 4.1 \ (d, 2H), \ 3.7 \ (m, 1H), \ 3.2 \ (s, 3H), \ 2.8-2.6 \ (m, 2H), \ 1.7-1.5 \ (m, 1H), \ 1.3-0.8 \ (m, 9H) \ ppm.^5$

Acknowledgements. Financial support of this work by Comisión Asesora de Investigación Científica y Técnica (CAICYT) is gratefully acknowledged. One of us, C.V. thanks M.E.C. for a grant.

References

- 1.- J. Barluenga, F. Aznar, R. Liz and M^a P. Cabal. J. Chem. Soc., Chem Comm., 1985, 1375.
- 2.- J. Barluenga, F. Aznar, M^a P. Cabal and C. Valdés, in preparation.
- J. Barluenga, F. Aznar, R. Liz, M^a P. Cabal, F. Hernandez and M.C. Foces Foces. J. Chem. Soc. Chem. Comm. 1988, 1247.
- 4.- J. Barluenga, F. Aznar, Mª P. Cabal and C. Valdés. Tetrahedron Lett., 1989, 1413.
- 5.- Recorded on a Brüker AC-300 Spectrometer.

(Received in UK 11 December 1988)